• Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Devine Concepts

Mobile Electronics Expert in Naples, Florida

  • Home
  • Services
    • Car Audio
    • Custom Installation
    • Driver Safety
    • Radar / Laser Detectors
  • About Us
    • Awards and Accolades
    • Meet the Team
    • Virtual Tour
  • Location
  • Contact Us
  • Facebook
  • Instagram
  • YouTube
  • Search

BestCarAudio.com

When it Comes to Subwoofer Specifications, Some Numbers Don’t Matter

BestCarAudio.com - June 4, 2023

Subwoofer SpecificationsIf you are a mobile electronics enthusiast like we are, then it’s quite possible that you enjoy reading product specifications. You can learn a lot about the design and application of a product from the specs. Amplifier power ratings are probably the most popular specs, but there are a lot more. One product specification that tends to confuse people more than help them is speaker efficiency. This article explains what the numbers mean and how you should analyze the appropriateness of subwoofer specifications, one subwoofer to another.

Speaker Efficiency

Subwoofer SpecificationsIn a nutshell, the efficiency specification attempts to quantify how much sound a speaker will produce when provided with a given amount of power. Manufacturers provide the specification in two common methods. The most common are decibels of output when fed with 1 watt of power and measured at 1 meter from the speaker, written as 1 W/1 m. The other specification method involves replacing the 1 watt power measurement with 2.83 volts. For a 4 ohm car audio speaker, 2.83 volts works out to 2 watts of power or 4 watts into a 2 ohm speaker. Make sure to take the impedance of the speaker into consideration with the latter format.

For a subwoofer, we derive this efficiency number with a formula that includes the driver’s resonant frequency, equivalent suspension compliance and driver’s electrical Q. In reality, the resulting number is purely theoretical and applies most directly to output in the frequency range above where most subwoofers play. There is the heart of the matter: The efficiency specification doesn’t describe how loud the subwoofer is at low frequencies. The only way to predict and compare performance is to model the behavior of the driver in simulation software.

Frequency Response Simulation

Let’s compare two 10-inch speakers. For sample A, we will use a very high-quality car audio subwoofer. Since we want to make this example somewhat extreme, we will use a 10-inch pro audio woofer as Sample B in our comparison. We will use BassBox Pro 6 to make the comparisons.

Sample A has a calculated efficiency of 93.21 dB when driven with 2.83 V. Sample B has an efficiency of 95.07 dB. Without modeling the low-frequency behavior of the driver, you’d happily think that Sample B was the louder of the two by 1.86 dB.

We modeled each driver in a sealed enclosure with a volume that provides a total system Q (Qtc) of 0.707. The car audio subwoofer is in 0.694 cubic feet, and Sample B is in 0.378 cubic feet net.

Subwoofer SpecificationsAs you can see from the graph, the output of the two woofers varies dramatically. Sample A is louder at 40 Hz by an impressive 4.95 dB. That is contradictory to the efficiency specification, isn’t it? It is, however, not wrong.

Subwoofer Specifications

When an engineer designs a speaker, the first thing to decide is the application. Will this be a high-SPL car audio speaker, or a pro-sound speaker? The differences make a great deal of difference.

Our sample subwoofers also have dramatically different excursion capabilities. Sample A has an Xmax of 17.6 mm and Sample B has an Xmax of only 4 mm. It is worth noting and reminding everyone that cone excursion quadruples for every halving of frequency. If these speakers were given enough power to play 100 dB at 80 Hz with an excursion of 1 mm, then they would need to move 4 mm at 40 Hz. At 20 Hz, they would need to move 16 mm. An excursion requirement of 16 mm is no problem for Sample A, but will likely rip Sample B to shreds.

Comparing the output of two drivers requires that we ensure the driver can handle the excursion requirements necessary to meet our needs.

Subwoofer SpecificationsIn the case of our subwoofer simulations, due to excursion limits, Sample B can produce a maximum output of only 94.9 dB at 40 Hz. Sample A can produce 108.3 dB at the same frequency. That is a difference of 13.4 dB. This difference is significant. Sample B simply cannot produce 100 dB of output at 40 Hz in this enclosure. Thus, Sample B not a suitable choice for a subwoofer, which makes sense, since it was designed to be a bass guitar speaker.

Choosing the Right Subwoofer

Subwoofer SpecificationsUnless you own speaker-modeling software and know how to use it, it can be tricky to determine the performance of one subwoofer versus another. Even more difficult is attempting to predict how one sounds when compared to another. Frequency response is just one of the many criteria that differentiate one subwoofer from another. Excursion capabilities, enclosure requirements, distortion characteristics and – of course – cost are all factors to be considered.

Many people think that just because it is harder to hear distortion at low frequencies, the design of a subwoofer matters less than that of a midrange speaker. You would be stunned at how a good subwoofer can bring out details in your music that you may have never heard before.

When it is time to go subwoofer shopping, visit your local mobile electronics specialist retailer. Discuss your needs with them and work with them to find a subwoofer solution that fits your application. You will be happy that you did.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Basics of OEM Integration in Your Newer Vehicle

BestCarAudio.com - May 7, 2023

OEM IntegrationInstalling a mobile audio system involves much more than just hooking up some wires and driving in a few screws. Almost all vehicle manufacturers have realized that some amount of audio system tuning will dramatically improve their customers’ experience. When you decide it’s time to upgrade your factory audio system, we need to take into account any tuning that may have been done by the factory. It’s not easy, but at the same time, it’s not impossible. This article provides a brief look at what is involved in connecting a new amplifier and speakers to your factory source unit or amplifier, or as it is called, OEM integration.

It’s Not Flat

No, we aren’t talking about the Earth. One of the first steps in designing a premium audio system upgrade is to measure the electrical signal that is being sent to each of your speakers. Why? As we mentioned, more and more factory source units and amplifiers include advanced signal processing. Even some of the most basic audio systems with only four speakers have custom equalization for each speaker. Once our installers know what they are dealing with, they use that information in designing your new system.

OEM IntegrationThe signal measurement process should be done before system design. If the signal is flat (no equalization), then the system design may take a different direction from when the signal is equalized. Compensating for factory equalization requires that some kind of equalizer be installed in the new system. Either way, we have to allot time to measure the acoustical response of the new system and make appropriate adjustments.

Think of this process as though your installer were a surgeon preparing to solve a medical problem for you. The surgeon will order x-rays, scans and many tests long before you’re on the operating table. Nobody wants to start work on a project without knowing what they are dealing with. Modern car audio systems are no different.

Front and Center

OEM IntegrationAutomobile manufacturers strive to make all their customers happy – within a certain budget. This goal includes providing an enjoyable audio experience for everyone in the vehicle. Many mid- and high-level factory audio systems use a center channel to help create a listening experience that is enjoyable for both occupants of the front seats. Configured properly, a center channel can help create a realistic soundstage from both seating positions. Trust us when we say that some of the people who tune these factory audio systems have a lot of experience doing what they do.

When we want to upgrade the audio system in a vehicle with a center channel, we have to reverse-engineer how that speaker is functioning. Is it a mono signal that is the sum of the left and right signals? Is it an up-mixed signal that plays sounds that are not reproduced by the left and right speakers? It could also be a little bit of both. Your installer will have to do some tests to decide what is happening and how to deal with it.

Do We Undo or Up-do?

OEM IntegrationIf you have a vehicle with a genuine up-mixed center channel, one of the best ways to upgrade the audio system is to leave the processing alone and add better speakers, amplifiers and signal processing. With this method, we can create a sound system that sounds amazing from both the driver and passenger seats.

The basic concept is to take the left, center and right signals; recombine any frequency filtering; then send those three signals to whatever speakers you choose for each side of the vehicle and the new center channel. Often, the new system will be a three-way speaker set in the doors and maybe the A-pillars, and a two-way system in the center. We will most certainly use a digital signal processor and/or an integration processor to do the signal filtering and tuning for the new system.

How We Undo What They Do

OEM Integration
The JL Audio Fix 82 can “fix” a number of factory signal problems.

Several processors on the market can sum filtered channels together and undo factory equalization and time alignment. Some of these processors require manual adjustments and some work automatically with a custom setup track. After using one of these processors to provide a full bandwidth signal, we can then use digital signal processing to set up the new system and compensate for the vehicle acoustics. Just as the vehicle manufacturer chose to equalize the signal going to each speaker, we need to do this to maximize the performance of your new system.

What if We Don’t Undo What They Did?

Imagine a simple scenario: You have a car, perhaps a Nissan Altima. Even the base model audio system has equalization in this vehicle. Equalization is based on the speaker that is being used, location of the speaker and acoustic effects of the vehicle on the signal from that speaker relative to the listening position. If we change the speaker to one that is better, the factory equalization can – and most likely will – work against us. That nice new speaker may sound worse than the cheap factory speaker. After all, the manufacturer tried to make what was likely a low-quality speaker sound OK.

Trust Your Local OEM Integration Experts

When it comes time to upgrade the audio system in a fairly new vehicle, make sure you are working with a mobile electronics retailer that knows how to evaluate the existing audio system properly. If you are changing the source unit, then it’s no big deal. But if you are using the factory radio and/or amplifier, proper testing is crucial. Don’t be scared or discouraged. A well-trained retailer can transform any audio system into something truly amazing! Drop in and see what they can do for you.
This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, Integration, RESOURCE LIBRARY

Product Spotlight: Rockford Fosgate M2-500X1 Element Ready Amplifier

BestCarAudio.com - April 10, 2023

M2-500X1

When it comes to marine entertainment systems, Rockford Fosgate speakers, subwoofers and amplifiers are among the best in the industry. If you’re searching for an amplifier to power the subwoofer system on your boat, the new M2-500X1 is a great choice. This 500-watt is efficient, includes all the features you could want and sounds great! Let’s check it out.

Features of the Rockford Fosgate M2-500X1

The M2 Series of amplifiers is based on the Prime Series of car audio amplifiers. The amplifiers have been upgraded with Element Ready features that improve their longevity in high-humidity applications. All the terminals are zinc nickel-plated brass so they won’t corrode. The heatsink, which measures 6.5 by 8.5 by 1.9 inches, has been powder-coated with a UV-resistant gray finish that will look great for years. The circuit board has a special conformal coating that prevents the tiny traces and components from oxidization that can affect performance. This amplifier and its two-, four- and five-channel brethren are serious about reliability and performance in marine applications.

The M2-500X1 is a mono Class D amplifier designed to power subwoofers. The amp can produce a continuous 300 watts of power when driving a 4-ohm load. Power output jumps up to 500 watts when driving a 2-ohm load. Frequency response is specified as being 20 Hz to 250 Hz. The amp includes an adjustable high-pass infrasonic filter that can be set between 15 and 40 Hz, along with a low-pass filter that’s adjustable between 50 and 250 Hz. Both filters use -12 dB/octave Butterworth alignments. The amp also includes Rockford Fosgate’s Punch EQ circuit that allows for up to 18 dB of boost to be added at 45 Hz. If your subs didn’t hit hard before adding this amp, they will after! Finally, the amplifier includes an RLC remote level control to fine-tune the bass level quickly and easily right from the helm.

Your installer will appreciate that Rockford Fosgate has included their C.L.E.A.N. input and output clip LEDs to make it easy and fast to set the amp up. The amp has a set of RCA input jacks for low-level signals up to 4 volts. If your application requires it, speaker-level inputs on a pigtail will accept up to 12 Vrms of signal. The amp also has an auto-sensing turn-on feature that will activate it when it detects that a factory-style radio connected to the speaker-level inputs is turned on. Both inputs use a balanced differential design to optimize noise rejection for clean, clear sound.

M2-500X1
Corrosion-resistant zinc nickel-plated brass connections ensure reliable power delivery and performance.

A Pedigree of Car Audio Performance

With more than 50 years of car audio experience under their belts, the Rockford Fosgate team created the M2-500X1 with many of the technologies found in the Punch and Power Series models. In addition to the C.L.E.A.N. feature, the amp includes a high-efficiency MEHSA 4 high-mass heatsink to keep all the components running cool so they remain reliable. The NOMAD protection circuit monitors the amp for shorts or low-impedance loads to keep things safe. The M2-500X1 uses a loosely regulated power supply design called P.O.W.E.R. to maximize power production when the supply voltage increases. Finally, the amplifier and all the associated specifications comply with the ANSI/CTA-2006 standards for power rating. There are no “If Lightning Strikes” (ILS) numbers on Rockford Fosgate gear.

M2-500X1
The M2-500X1 includes mounting hardware, a high-level input cable and an RLC remote level control.

Upgrade Your Marine Audio System with Rockford Fosgate

If your boat needs great bass, drop by a local Rockford Fosgate retailer and check out the fantastic M2-500X1 500-watt mono Element Ready amplifier and the impressive M2 Series of 10- and 12-inch subwoofers. You can find a retailer near you using their dealer locator on their website. To learn more about the M2 Series of marine audio products, check out their Facebook page, Instagram feed and their amazing YouTube channel.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Devine Concepts

14848 Old 41 Rd
Suite 9,
Naples, FL 34110
United States (US)
Phone: (239) 451-3210
Email: info@devine-concepts.com

Filed Under: ARTICLES, Marine Audio, PRODUCTS, RESOURCE LIBRARY Tagged With: Rockford Fosgate

Why are Speakers Different Sizes?

BestCarAudio.com - April 3, 2023

Speakers Different SizesWhen you head to your local mobile electronics specialist in search of new speakers, there are a few criteria to keep in mind. Choosing a speaker size can go one of two ways: You can pick something that fits a specific mounting location or you can choose based on the characteristics of the speaker relative to its size. Are you interested in knowing why speakers come in different sizes? Good! You’ve come to the right place.

What Does a Speaker Do?

It is the job of a speaker to convert the electrical signal from your amplifier into motion. The motion of the speaker cone excites the air around it. As the cone moves forward, the air in front of the cone is pressurized. As the cone moves rearward, the air is rarefied. These pressure waves extend out from the speaker and our ears detect these minute changes in pressure as sound. Pretty simple, isn’t it?

Things to Consider in Terms of Reproducing Sound

Speakers Different SizesWhen it comes to reproducing sounds, the lower the frequency, the harder it is to produce the sound. For every doubling of frequency, the speaker cone has to move a quarter the distance to produce the same level of output. As example, if your subwoofer has to move 2 mm to produce 95 dB of output and 40 Hz, it only has to move 0.5 mm to reproduce 95 dB at 80 Hz. To reproduce 95 dB of output at 160 Hz, the cone only has to move 0.125 mm.

The size of a speaker cone affects how much sound the speaker will create for a given amount of input signal. Let’s generalize things a little (because a lot of external factors affect this statement): A 12-inch speaker cone has to move twice as far as a 15-inch speaker cone to produce the same amount of output at a given frequency. That also means the 12-inch speaker requires more power to produce the same sound as the 15-inch.

Bigger is Always Better, Right?

Based on this logic, you should simply select the biggest possible speaker for every application, right? Well, it’s not quite that easy. When we get into midrange and high frequencies, the speaker cone has to move back and forth very fast. A 1,000 Hz tone requires that the speaker move forward and backward 1,000 times a second. A 10 kHz tone requires 10,000 of these same motions per second. If we use a big speaker with a relatively heavy cone, it’s very hard to keep up with the input signal. Why? Inertia.

Speakers Different SizesLet’s use an analogy to help explain this. Imagine that you are at a parade and waving a flag. The pole is 6 feet long and the flag on the end is 3×5-foot. You wave the flag back and forth as fast as you can. Even if you are really strong, the fastest you can wave it back and forth is once, maybe twice a second. Now, look at the little kid standing beside you at the parade. He has a little paper flag that’s 2×3 inches on a 5-inch-long plastic stick. His little hands can wave that flag back and forth five or six times a second.

Speaker engineers have to balance several characteristics to achieve specific goals for a given design. Let’s compare the weight of a speaker cone for a 10-inch subwoofer to that of a 10-inch midrange used in concerts and public address systems. A typical 10-inch sub that is designed to play frequencies below 150 Hz has a cone assembly (cone, voice coil, former, half the spider and half the surround) that weighs around 150 grams. A 10-inch speaker designed to be used for midrange frequencies (150 to 1 kHz) has a cone mass assembly of around 40 grams.

Clearly, the lighter assembly can move faster and keep up with the reproduction of higher frequencies.

Is Lighter Better?

Now we face the conundrum of balancing low- vs. high-frequency output. A lighter cone will move faster and is capable of producing extended high-frequency output. A heavier cone has a lower resonant frequency and thus, can produce more low-frequency output. Combine these generalizations with electrical issues affecting voice coil inductance, and we further hinder high-frequency output. It starts to become clear that we need different-sized speakers for different applications.

Subwoofers

Speakers Different SizesMost subwoofers are sized from 8 to 18 inches. Since subwoofers are designed to play frequencies below 100 Hz in car audio applications, they need a lot of excursion capability and a low resonant frequency. This means subwoofers will have relatively heavy cones. At high excursion levels, cones are exposed to significant stresses, so the cone has to be strong, and this further contributes to their weight. Subwoofers have to handle a lot of power. This power allows us to move the cone over relatively large distances. Power handling requires bigger components in the form of large-diameter voice-coil formers and windings.

Midbass Drivers

Speakers Different SizesA dedicated midbass driver is typically designed to play from around 50 to 500 Hz. Sizes are typically 6.5 to 8 inches in size, but some people have used 10- and 12-inch drivers. The cone has to be heavier than that of a midrange, but not heavy enough to slow it down for higher frequencies.

If you look at the frequency content of a performer, you will see that many voices extend down to 100 Hz. Accuracy in speed is important in this frequency range. Resonances and non-linear behavior causes harmonic distortion. This is often perceived as “warmth” in the midbass region. We do not want anything extra in our music, so accuracy is what matters.

Midrange Speakers

Speakers Different SizesMidrange speakers become a balancing act of several different characteristics. Of course, the cone has to be relatively light, but managing linearity and distortion becomes an even higher priority. It’s easier to hear distortion at midrange frequencies. The cone has to balance mass, damping and strength to prevent deforming and cause harmonics. The suspension has to be very linear.

Managing inductance also becomes a more significant issue because it can reduce high frequency output. Midrange drivers for typical car audio applications vary in size from 6.5 inches and 6×9 inches on the large side down to as small as 2.5 inches. Many midrange drivers try to do double-duty as midbass drivers for use in two- or three-way audio systems. While this is a minor compromise, it is a necessity. We consider midrange speakers to cover the range from 100 Hz to 3,000 or 4,000 Hz.

Tweeters

Speakers Different SizesTo reproduce frequencies above 2.5 kHz, tweeters need very light cones. Tweeter cones don’t move very far, so they don’t require much excursion, but there still has to be a suspension. Resonances in the cone can wreak havoc with frequency response. Premium tweeters may make use of features like ferrofluid in the gap to improve power handling. Premium tweeters may also include a copper pole-piece cap to reduce inductance and distortion.

Directivity Considerations

Another consideration when choosing speakers is that all speakers above a certain frequency start to become directional. Directivity refers to a reduction in high-frequency output as you move off-axis to the speaker. If you choose your speakers and design your system carefully, you can minimize the effect of directivity. The only real consideration would be to have your tweeters pointed at you.

The Balancing Act

The applications for the information in this article vary, depending on your overall goal for your audio system upgrade. A simple set of coaxial replacement speakers will be chosen by the size application. If you are building a high-end audio system with multiple amplifiers, channels, digital signal processing and custom speaker mounting locations, then choosing the right speakers in terms of their quality and intended application becomes more important.

Learn More about Speakers and Their Different Sizes at Your Local Retailer

Your local mobile electronics specialist retailer can help you choose the right speakers for your application and performance goals. Drop in at a local shop today and have a listen to their demo board or demo vehicle. It’s an amazing experience!

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Why Buy A Bigger Amplifier?

BestCarAudio.com - March 6, 2023

AmplifierWhen an audio enthusiast goes shopping for an amplifier, the question of “how much power do I need?” comes up almost every time. There are a few factors to take into consideration when answering this question. This article looks at those factors and provides some technical background to help support your decision.

Why Do We Need Power?

AmplifierQuite simply, when you send more power to a speaker, it moves farther and produces more output. Two limiting factors within the speaker itself control how much power it can handle. At higher frequencies, the limit is heat. Speakers are notoriously inefficient. The best convert about 2% of the energy sent to them into sound and the rest is converted to heat. When you send 60 watts of power to a speaker, most of that energy heats up the voice coil and the components around it. Eventually, those components will reach a temperature where they will fail. The speaker will usually stop working at this point, or shortly after.

The second limiting factor is how far the speaker can move. Inexpensive midrange speakers may be able to move back and forth about half an inch without creating massive distortion. Higher-end speakers have as much as twice as much cone excursion capability. (Speakers don’t sound the same at high volumes as they do at low. Audition your speakers at the volume you will be using them.)

Power vs. Output

Power works like this: When you double the power going to a speaker, the output increases by 3 dB. That is not a large amount. In fact, it is the smallest change in amplitude that is perceivable across the audible frequency range. (1 dB is the smallest perceivable change in amplitude where our hearing is most sensitive – 1 to 2 kHz).

Perceived volume is a different beast. An increase of 10 times the power sent to a speaker produces a doubling of perceived volume.

Speaker Efficiency

Another consideration in choosing an amplifier is the efficiency of your speakers. An inexpensive conventional midrange speaker may produce an average output of 91 dB when measured 1 meter away from the speaker cone and when driven with 1 watt of power. A high-quality speaker will likely be less efficient, but capable of playing over a wide range of frequencies. A measurement of 85 dB efficiency at the same distance and power level is not uncommon.

How Loud Do We Need it?

AmplifierA typical RMS sound pressure level for an orchestra, when you’re seated three or four rows back from the musicians, is around 100 dB. If we use our analogy of the 85 dB efficient speaker, we need 31.6 watts to get that speaker to play 100 dB. The problem is that this is the average power, not the peak power. Perhaps the performance crests at 110 dB? In that case, we need a peak power level of 316 watts. Just keep in mind that the speaker components are likely to melt if you keep this effort up for any significant amount of time.

We don’t suggest buying any speaker based on its efficiency. Criteria like linearity, lack of distortion, application limitations and frequency range are far more important. If you need it loud, buy more speakers, or larger speakers.

Distortion Happens

What happens if we run out of power in an amplifier? We get distortion. This distortion creates all sorts of high-frequency harmonic content. That increased high-frequency energy is what causes tweeters to fail. We need to choose an amplifier that will allow our speakers to play loudly enough without running out of power.

You are better off buying a 100 watt per channel amplifier and only using 50 watts than you are buying a 50 watt amplifier and occasionally causing it to distort. Remember, those 50 extra watts only result in an increase in output of 3 dB – assuming the speaker can handle it.

It Takes Power to Make Power

AmplifierA consideration that many people overlook is the ability to supply an amplifier with the power it needs to produce the power you want. Modern vehicles have electrical systems with reduced power production capabilities. Smaller alternators, smaller batteries and smaller wiring save weight. Reduced weight transforms into better fuel economy for the vehicle.

As a general rule of thumb for power consumption calculations, you can assume that every 100 watts of power from an amplifier will require about 10 amps of current from your electrical system. Yes, some amplifiers are more efficient than others, but this serves as a good, quick guideline.

If you want to purchase a 650 watt amplifier to power your subwoofer, then your electrical system (battery and alternator) has to be able to provide it with about 65 amps of current. This power requirement is on top of what is required to run the vehicle. The computers, lights, ignition system, radio and heater all consume power as well. On a modern compact car, it would be no surprise if you only had 30 to 40 amps of power left over for an amplifier.

You can get away with a big amplifier – but you can’t play it indefinitely, even with the vehicle running. Once you have exceeded the power delivery capabilities of the amplifier, the battery will start to supply current. You can kill a car battery, even with the vehicle running. Once you shut the car off, you may not have enough energy in the battery to restart it.

Blowing up Amplifiers

AmplifierAmplifiers do not like to be starved for power. When you run out of power to drive your amplifier, in most cases, the amplifier rail voltage starts to drop. Power starvation causes the maximum undistorted power production of the amplifier to decrease. We are back to the same scenario: Distortion causes harmonics, and harmonics can damage fragile speakers.

If you have had an amplifier fail, and the failure was because the power supply section of the amp self-destructed, chances are you were not able to feed the amp properly.

How Much Amplifier Power Do You Need?

The solution: Buy as much as power as you can afford. Buy the biggest that will physically fit in your application. Get the highest-performance amplifier you can. Make sure your installer uses properly sized wiring to install the amplifier. Upgrade your car battery to a high-performance, high-capacity unit if you need more reserve power.

For more information, visit your local mobile electronics specialist retailer. Be honest about your needs and expectations for your audio system. They will be able to suggest a solution that sounds fantastic and will offer years of reliable performance.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Interim pages omitted …
  • Page 33
  • Go to Next Page »

Primary Sidebar

About Us

About Us

Devine Concepts is a mobile electronics retailer based in Naples, Florida. We are led by Adam Devine, a 20-year veteran in the industry and a Mobile Electronics Association top 50 … [Read More...]

Take a Tour of Our Facility

virtual tour

We invite you to tour our facility virtually. We hope you love what you see. (It’s even better in person!)

Car Audio

Car Audio

Devine Concepts in Naples, Florida, specializes in car audio. While some shops offer this as one of their services, it is the main focus in our facility. In fact, our owner Adam … [Read More...]

Radar / Laser Detectors

Radar / Laser Detectors

One of the specialties at Devine Concepts in Naples, Florida, is laser and radar detectors. We offer both portable and custom-installed solutions to our clients. It is our opinion … [Read More...]

Custom Installation

Custom Installation

Custom Installation

Devine Concepts in Naples, Florida, was founded in 2018 by Adam Devine, an MECP Master Installer with more than 20 years of experience,  and one of the most-awarded mobile … [Read More...]

Footer

Location


Get Directions to Devine Concepts

Address

Devine Concepts
14848 Old 41 Rd
Suite 9,
Naples, FL 34110
Phone: (239) 451-3210

Services

  • Car Audio
  • Custom Installation
  • Driver Safety
  • Radar / Laser Detectors

Connect with Us

  • Facebook
  • Instagram
  • YouTube

Store Hours

SundayClosed
Monday9:00 AM - 5:00 PM
Tuesday9:00 AM - 5:00 PM
Wednesday9:00 AM - 5:00 PM
Thursday9:00 AM - 5:00 PM
Friday9:00 AM - 5:00 PM
SaturdayClosed

Copyright © 2025 Devine Concepts · Privacy Policy · Website by 1sixty8 media, inc. · Log in